JiwonDev

#10 ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ (Relevance Feedback)

by JiwonDev

์•ž์—์„œ

๊ฒ€์ƒ‰๋ชจ๋ธ์˜ ๊ธฐ๋ณธ์š”์†Œ(TF, IDF, Document Length, N)

๋ถˆ๋ฆฐ ๋ชจ๋ธ (๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•œ ํ™•์žฅ ๋ถˆ๋ฆฌ์–ธ ๋ชจ๋ธ์€ ๋ฐฐ์šฐ์ง€ ์•Š์•˜์Œ)

๋ฒกํ„ฐ ๊ณต๊ฐ„๋ชจ๋ธ(cos ์œ ์‚ฌ๋„, TF-IDF ๋ฐ์ดํ„ฐ๋ชจ๋ธ)

ํ™•๋ฅ  ๋ชจ๋ธ(BM25)

์–ธ์–ด ๋ชจ๋ธ(JM, dirichlet)

 

์ •๋ณด๊ฒ€์ƒ‰ ์„ฑ๋Šฅํ‰๊ฐ€(P, R, F1, Pre, R-pre NDCG)

์ด๋ ‡๊ฒŒ ์ •๋ณด๊ฒ€์ƒ‰์˜ ๊ธฐ๋ณธ์š”์†Œ๋“ค์„ ๊ฐ„๋žตํ™” ํ•˜์—ฌ ๋ฐฐ์› ์Šต๋‹ˆ๋‹ค.

 

์ด์ œ ์ด๋ ‡๊ฒŒ ๋งŒ๋“  ์ •๋ณด๊ฒ€์ƒ‰๋ชจ๋ธ (IR Model)์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” '์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ'์— ๋Œ€ํ•ด ๋ฐฐ์›Œ๋ด…์‹œ๋‹ค.

์ •๋ณด๊ฒ€์ƒ‰์˜ ์ „์ฒด ๊ณผ์ •

# ์‚ฌ์šฉ์ž ์งˆ์˜์˜ ๋ถˆ์™„์ „, ๋ถˆ์ถฉ๋ถ„์„ฑ

๊ฒ€์ƒ‰๋ชจ๋ธ์—์„œ ์‚ฌ์šฉ์ž๋Š” SQL์„ ์ด์šฉํ•˜์—ฌ ์งˆ๋ฌธํ•˜๋Š”๊ฒŒ ์•„๋‹ˆ๋ผ, ์ž์—ฐ์–ด๋กœ ์งˆ์˜๋ฌธ์„ ์ž‘์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, ๊ฐ™์€ ์งˆ๋ฌธ ๋‚ด์šฉ์ด๋ผ๋„ ์‚ฌ๋žŒ๋งˆ๋‹ค ์งˆ์˜๋ฌธ์˜ ๊ตฌ์„ฑ์ด ๋‹ค๋ฆ…๋‹ˆ๋‹ค. ์ฆ‰ ์‚ฌ์šฉ์ž ์งˆ์˜์˜ ๋ถˆ์™„์ „, ๋ถˆ์ถฉ๋ถ„์„ฑ ๋•Œ๋ฌธ์— ๊ฒ€์ƒ‰์„ฑ๋Šฅ์ด ์ €ํ•˜ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๊ฐ€ ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ์„ ์ด์šฉํ•˜์—ฌ ํ•ด๊ฒฐํ•ฉ๋‹ˆ๋‹ค.

Vocabulary mismatch

 


# Relevance Feedback(์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ)

์งˆ์˜์— ๋Œ€ํ•œ ์ ํ•ฉ์„ฑ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

๊ฒ€์ƒ‰๋ชจ๋ธ์—์„œ '์งˆ์˜ ๋ฌธ์— ๋Œ€ํ•œ ์ •๋ณด'๋งŒ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์„œ์˜ ์œ ์‚ฌ๋„ ์ˆœ์œ„๋ฅผ ๋งค๊ฒผ์Šต๋‹ˆ๋‹ค.

์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ์€ ์ด์— ์ถ”๊ฐ€๋กœ '์ด๋ฏธ ๊ฐ€์ง€๊ณ  ์žˆ๋˜ ์ ํ•ฉ๋ฌธ์„œ์˜ ์ •๋ณด'๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.

์‚ฌ์šฉ์ž ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ : ์‚ฌ๋žŒ์ด ์ง์ ‘ ์ ํ•ฉ์„ฑ์„ ๊ฒ€์‚ฌํ•˜๊ณ  ํ”ผ๋“œ๋ฐฑํ•ฉ๋‹ˆ๋‹ค.

์˜์‚ฌ (pseudo) ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ : 1์ฐจ ๊ฒ€์ƒ‰์—์„œ ์ƒ์œ„ ๊ฒ€์ƒ‰๋œ ์ƒ์œ„k๊ฐœ์˜ ๋ฌธ์„œ๋ฅผ ์ ํ•ฉํ•˜๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์—ฌ ํ”ผ๋“œ๋ฐฑํ•ฉ๋‹ˆ๋‹ค.

(๋ถ€์ ํ•ฉ ๋ฌธ์„œ๋Š” ๋ฐ˜๋Œ€๋กœ ํ•˜์œ„ 10๊ฐœ)

์šฐ๋ฆฌ๋Š” ์—ฌ๊ธฐ์—์„œ ์ง€์—ญ๊ธฐ๋ฒ•- ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ์„ ๊ณต๋ถ€ํ•ฉ๋‹ˆ๋‹ค.


# ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ์˜ ์ฃผ์š” ๋‹จ๊ณ„

Step-3์˜ ํ”ผ๋“œ๋ฐฑ ์ •๋ณด๋ฅผ 1์ฐจ๊ฒ€์ƒ‰ ์ƒ์œ„-k๊ฐœ์˜ ๋ฌธ์„œ๋กœ ์‚ฌ์šฉํ•˜๋ฉด [์˜์‚ฌ ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ] ์ž…๋‹ˆ๋‹ค.


# ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ์˜ ํ•ต์‹ฌ

๊ฐ ๋ฌธ์„œ๊ฐ€ ๋ฒกํ„ฐ ๊ทธ๋ž˜ํ”„๊ฐ’์„ ๊ฐ€์ง„๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋ฉด, [์ ํ•ฉ๋ฌธ์„œ, ๋ถ€์ ํ•ฉ๋ฌธ์„œ]์ •๋ณด๋ฅผ ์ด์šฉํ•ด ์งˆ์˜๋ฌธ์„ ์›ํ•˜๋Š” ์œ„์น˜๋กœ ๋ฐ”๊พธ๋Š”๊ฒŒ ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ์˜ ํ•ต์‹ฌ์ž…๋‹ˆ๋‹ค.

์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ์˜ ๋ชฉํ‘œ

์ด๋Š” ๊ฐ ๋ฒกํ„ฐ ๊ทธ๋ž˜ํ”„ ๊ฐ’์˜ ํ•ฉ๊ณผ ์ฐจ๋ฅผ ์ด์šฉํ•˜์—ฌ ์งˆ์˜๋ฌธ์„ ์ˆ˜์ • ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ ํ•ฉ๋ฌธ์„œ ๋˜๋Š” ๋ถ€์ ํ•ฉ๋ฌธ์„œ(D)๋ฅผ ์ด์šฉํ•ด ์งˆ์˜๋ฌธ(Q)์˜ ๊ฐ’์„ ๋ฒกํ„ฐํ•ฉ, ๋ฒกํ„ฐ์ฐจ๋กœ ์›ํ•˜๋Š” ์œ„์น˜๋กœ ๋ฐ”๊ฟ‰๋‹ˆ๋‹ค. 

์™ผ์ชฝ (์ ํ•ฉ๋ฌธ์„œ, ๋ฒกํ„ฐํ•ฉ์…ˆ)    ์˜ค๋ฅธ์ชฝ(๋ถ€์ ํ•ฉ๋ฌธ์„œ, ๋ฒกํ„ฐ๋บผ์…ˆ)


# ๋กœ์น˜์˜ค ์•Œ๊ณ ๋ฆฌ์ฆ˜

์ด๋ฅผ ์ด์šฉํ•œ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์ด '๋กœ์น˜์˜ค ์•Œ๊ณ ๋ฆฌ์ฆ˜' ์ž…๋‹ˆ๋‹ค.

์‹ค์ œ ๊ฒ€์ƒ‰๋ชจ๋ธ์—์„œ๋Š” '์ ํ•ฉ๋ฌธ์„œ'๊ฐ€ ํ•œ๊ฐœ๊ฐ€ ์•„๋‹Œ ์—ฌ๋Ÿฌ๊ฐœ๋ผ์„œ

๊ฐ ๋ฒกํ„ฐ๋“ค์˜ ์ค‘์‹ฌ์ ์„ ๊ณ„์‚ฐํ•˜์—ฌ ๋ฒกํ„ฐํ•ฉ(์ ํ•ฉ๋ฌธ์„œ), ๋ฒกํ„ฐ์ฐจ(๋ถ€์ ํ•ฉ๋ฌธ์„œ)๋ฅผ ์ด์šฉํ•˜์—ฌ ์งˆ์˜๋ฌธ์„ ๋ณ€๊ฒฝํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. 

๋ฒกํ„ฐ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๊ฐ $(a_1,b_1,c_1)$ $(a_2,b_2,c_2)$๊ฐ€ ์žˆ์œผ๋ฉด ๊ฐ ์ ๋“ค์„ ๋”ํ•œ ํ›„ ๊ฐœ์ˆ˜๋กœ ๋‚˜๋ˆ„๋ฉด ๊ทธ๊ฒŒ ์ค‘์‹ฌ์ ์ž…๋‹ˆ๋‹ค.

 

๋ฒกํ„ฐ์˜ ์ค‘์‹ฌ์€ ์–ด๋–ป๊ฒŒ ๊ตฌํ•˜๋‚˜์š”?

๋”๋ณด๊ธฐ

์‰ฝ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ƒฅ ๋”ํ•ด์„œ ํ‰๊ท  ๋‚ด๋ฉด ๊ทธ๊ฒŒ ์ค‘์‹ฌ ๋ฒกํ„ฐ์ž…๋‹ˆ๋‹ค.

1์ฐจ์› ์ขŒํ‘œํ‰๋ฉด์—์„œ ์ค‘์‹ฌ๊ฐ’์€, ๊ฐ ์ ๋“ค์„ ๋”ํ•ด์„œ ๊ฐœ์ˆ˜๋กœ ๋‚˜๋ˆ ์ฃผ๋ฉด ๋ฉ๋‹ˆ๋‹ค.

๋ฒกํ„ฐ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๊ฐ $(a_1,b_1,c_1)$ $(a_2,b_2,c_2)$๊ฐ€ ์žˆ์œผ๋ฉด ๊ฐ ์ ๋“ค์„ ๋”ํ•œ ํ›„ ๊ฐœ์ˆ˜๋กœ ๋‚˜๋ˆ„๋ฉด ๊ทธ๊ฒŒ ์ค‘์‹ฌ์ ์ž…๋‹ˆ๋‹ค.

( $\frac{a_1+a_2}{2}$ , $\frac{b_1+b_2}{2}$ , $\frac{c_1+c_2}{2}$ )

์ด๋ฅผ ์ˆ˜์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์œ„์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

์ˆ˜์‹์ด ์–ด๋ ค์›Œ ๋ณด์ผ ์ˆ˜ ์žˆ๋Š”๋ฐ, ๋‹จ์ˆœํžˆ ์ค‘์‹ฌ๋ฒกํ„ฐ์— ๊ฐ€์ค‘์น˜ a, b, r์„ ๋ถ™์ธ ๊ฐ’์ž…๋‹ˆ๋‹ค.

์ฐธ๊ณ ๋กœ ์ ํ•ฉ๋ฌธ์„œ, ๋ถ€์ ํ•ฉ๋ฌธ์„œ๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ ‘ ์ฐพ์•„์„œ ๋ฐ์ดํ„ฐ๋กœ ๋งŒ๋“ค๊ณ , ์˜์‚ฌ (pseudo) ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ์˜ ๊ฒฝ์šฐ ์ƒ์œ„ k๊ฐœ๋ฅผ ์ ํ•ฉ, ํ•˜์œ„ k๊ฐœ๋ฅผ ๋ถ€์ ํ•ฉ์œผ๋กœ ๋ณด๊ณ  ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.

 

๋‹ค๋งŒ ์‹ค์ œ ์‹œ์Šคํ…œ์—์„œ๋Š” ๋Œ€๋ถ€๋ถ„ '๊ธ์ •ํ”ผ๋“œ๋ฐฑ'๋งŒ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

์™œ ๊ธ์ •ํ”ผ๋“œ๋ฐฑ(์ ํ•ฉ๋ฌธ์„œ)๋งŒ ์‚ฌ์šฉํ• ๊นŒ์š”?

๋”๋ณด๊ธฐ

๊ธ์ •ํ”ผ๋“œ๋ฐฑ์€ ์ •ํ™•ํ•˜์ง€ ์•Š์•„๋„ ๋น„์Šทํ•œ ์งˆ์˜๋ฌธ ๋ฒกํ„ฐ๋ฅผ ํ•œ ๊ณณ์œผ๋กœ ๋ชจ์•„์ฃผ์ง€๋งŒ

๋ถ€์ •ํ”ผ๋“œ๋ฐฑ์€ ์ •ํ™•ํ•˜์ง€ ์•Š์œผ๋ฉด ๊ทธ๋ƒฅ ์งˆ์˜๋ฌธ ๋ฒกํ„ฐ๋ฅผ ํฉํŠธ๋ ค ๋†“์„ ๋ฟ์ž…๋‹ˆ๋‹ค.

Q { ์‚ฌ์ž } ์—์„œ ๊ธ์ •ํ”ผ๋“œ๋ฐฑ์€ '๋ฌด์—‡์ด ์‚ฌ์ž๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š”์ง€'๋ฅผ ์˜๋ฏธํ•˜๊ณ 

Q { ์‚ฌ์ž } ์—์„œ ๋ถ€์ •ํ”ผ๋“œ๋ฐฑ์€ '์‚ฌ์ž๊ฐ€ ์•„๋‹Œ ๋ชจ๋“  ๊ฒƒ'์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

๋ถ€์ •ํ”ผ๋“œ๋ฐฑ์—์„œ ๋„์›€์ด ๋ ๋ ค๋ฉด [์งˆ์˜๋ฌธ์ด ์•„๋‹Œ ๋ชจ๋“  ํ”ผ๋“œ๋ฐฑ]์„ ๊ณจ๊ณ ๋ฃจ ์ฃผ์–ด์—ฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์‚ฌ์‹ค์ƒ ๋ง์ด ๋˜์ง€ ์•Š์œผ๋ฏ€๋กœ

 

๋Œ€๋ถ€๋ถ„์˜ ์‹œ์Šคํ…œ์—์„œ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.

๋ฌผ๋ก  ์ ˆ๋Œ€์ ์ธ ์ •๋‹ต์€ ์—†์Šต๋‹ˆ๋‹ค. ์ •๋ณด๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์—์„œ ๋ถ€์ •ํ”ผ๋“œ๋ฐฑ์„ ์‚ฌ์šฉํ•˜๋Š” ๋” ๋‚˜์€ ๋ฐฉ๋ฒ•์ด ์žˆ๋‹ค๋ฉด ๋ฐ”๋€”์ˆ˜๋„ ์žˆ๋Š”๊ฑฐ์ฃ .


#์˜ˆ์ œ

๋กœ์น˜์˜ค ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์งˆ์˜๋ฌธ์„ ์ˆ˜์ •ํ•˜๋ฉด ์•„๋ž˜ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

[๊ธฐ์กด ์งˆ์˜], [์ ํ•ฉ๋ฌธ์„œ์˜ ์ค‘์‹ฌ๋ฒกํ„ฐํ•ฉ], [๋ถ€์ ํ•ฉ๋ฌธ์„œ์˜ ์ค‘์‹ฌ๋ฒกํ„ฐ์ฐจ]์— ๊ฐ๊ฐ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ™์—ฌ ๊ณ„์‚ฐํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.

์žฌ๋ฐŒ๋Š” ๊ฑด ๋‹จ์–ด์˜ ๊ฐ€์ค‘์น˜๊ฐ€ 0์—์„œ 1๋กœ ๋ณ€ํ•˜๊ธฐ๋„ ํ•œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. (ex ์งˆ์˜๋ฌธ : ํ•œ๊ตญ์ˆ˜๋„, '์„œ์šธ' 0->1๋กœ ๋ณ€๊ฒฝ)

 

์ฐธ๊ณ ๋กœ ์ด๋Ÿฐ ์‹์œผ๋กœ ์งˆ์˜๊ฐ€ ๋Š˜์–ด๋‚˜๋Š” ํ˜„์ƒ์„ ์ ํ•ฉ์„ฑ ํ”ผ๋“œ๋ฐฑ์˜ Query Extension(์งˆ์˜ ํ™•์žฅ)์ด๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.

๋˜ํ•œ ์งˆ์˜ ์šฉ์–ด์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๋ณ€๊ฒฝํ•˜๋Š” ๊ฒƒ(ex 1->2.4)์„ ์งˆ์˜์šฉ์–ด์˜ ์ฐจ๋ณ„ํ™”๋ผ๊ณ  ๋ถ€๋ฅด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.

ํ•œ์ค„๋กœ ์š”์•ฝํ•˜๋ฉด '์งˆ์˜ํ™•์žฅ'๊ณผ '์งˆ์˜์šฉ์–ด์˜ ์ฐจ๋ณ„ํ™”'๋ฅผ ํ†ตํ•ด ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์ด ํ–ฅ์ƒ๋œ๋‹ค. ๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.


# Ide_Regular ์•Œ๊ณ ๋ฆฌ์ฆ˜

๊ฒ€์ƒ‰์„ฑ๋Šฅ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ์ˆ˜์‹์ด๋ฉด, ๊ตณ์ด ๋ฒกํ„ฐ ํ‰๊ท ๊ฐ’์ด ์•„๋‹ˆ์—ฌ๋„ ๊ดœ์ฐฎ์Šต๋‹ˆ๋‹ค.

๋Œ€ํ‘œ์ ์œผ๋กœ Ide_Regular ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ‰๊ท ์ด ์•„๋‹Œ ๊ฐ ๋ฒกํ„ฐ์˜ ํ•ฉ์„ ์ด์šฉํ•˜์—ฌ ์งˆ์˜๋ฌธ์„ ํ”ผ๋“œ๋ฐฑํ•ฉ๋‹ˆ๋‹ค.


# Ide_Dec_Hi ์•Œ๊ณ ๋ฆฌ์ฆ˜

Ide_Regular์—์„œ ์ ํ•ฉ์€ ๋ฒกํ„ฐ์˜ ํ•ฉ์„, ๋ถ€์ ํ•ฉ ๋ฌธ์„œ๋Š” ์ตœ์ƒ์œ„ 1๊ฐœ๋งŒ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.

 



 

# ํ€ด์ฆˆ

ํ’€์ด

๋”๋ณด๊ธฐ

์ค‘์‹ฌ๋ฒกํ„ฐ๋ฅผ ์˜์–ด๋กœ Centroid vector๋ผ๊ณ  ํ•œ๋‹ค.

๋‹จ์–ด๋ฅผ ์ถœํ˜„์—ฌ๋ถ€(๋ถˆ๋ฆฐ)๊ฐ’์ด ์•„๋‹Œ TF๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌํ•˜๋ผ๊ณ  ํ–ˆ์œผ๋ฏ€๋กœ

  ๋‹จ์–ด a ๋‹จ์–ด b ๋‹จ์–ด c ๋‹จ์–ด d
D1 2 3 1 0
D2 0 2 3 1
C(์ค‘์‹ฌ) 2+0 /2๊ฐœ = 1 3+2 /2๊ฐœ = 5/2 1+3 /2๊ฐœ = 2 0+1 /2๊ฐœ = 1/2

์ •๋‹ต $( a: 1, b: \frac{5}{2}, c: 2, d: \frac{1}/{2} )$

ํ’€์ด

๋”๋ณด๊ธฐ

D_r ์€ ์ ํ•ฉ๋ฌธ์„œ ์ง‘ํ•ฉ, D_nr์€ ๋ถ€์ ํ•ฉ ๋ฌธ์„œ ์ง‘ํ•ฉ์„ ์˜๋ฏธํ•œ๋‹ค

$D_r = {D_1, D_2}$ , $D_n={D_4,D_5}$ ๋ผ๊ณ  ํ–ˆ์œผ๋ฏ€๋กœ ๊ฐ๊ฐ์˜ ์ค‘์‹ฌ๋ฒกํ„ฐ๋ฅผ ๊ตฌํ•จ๋…€ ๋œ๋‹ค.

  a b c d
D1 2 3 1 0
D2 0 2 3 1
C_r {D1,D2 ์ค‘์‹ฌ} 1 5/2 2 1/2
D4 1 0 0 2
D5 0 0 1 1
C_nr {D4,D5 ์ค‘์‹ฌ} 1/2 0 1/2 3/2

 

์งˆ์˜๋ฌธ q์— ์ ํ•ฉ๋ฌธ์„œ(C_r)๋ฅผ ๋”ํ•˜๊ณ  ๋ถ€์ ํ•ฉ๋ฌธ์„œ(C_nr)์„ ๋นผ๋ฉด ๋œ๋‹ค.

์—ฌ๊ธฐ์—์„œ ์งˆ์˜๋ฌธ ๊ฐ€์ค‘์น˜($\alpha = 1$) ์ ํ•ฉ๋ฌธ์„œ ๊ฐ€์ค‘์น˜($\beta=0.6$) ๋ถ€์ ํ•ฉ๋ฌธ์„œ๊ฐ€์ค‘์น˜($\gamma=0.4$)๋ผ๊ณ  ํ–ˆ์œผ๋ฏ€๋กœ

  a b c d
$\alpha$ *๊ธฐ์กด ์งˆ์˜ q0 1* 1 1* 1 1* 0 1* 0
+ $\beta$ * C_r 0.6* 1 0.6* 5/2 0.6* 2 0.6* 1/2
- $\gamma$ * C_nr 0.4* 1/2 0.4* 0 0.4* 1/2 0.4* 3/2
์ƒˆ๋กœ์šด ์งˆ์˜๋ฌธ q 1+ 6/10 - (4/10 +1/2) ... ... ...

๊ณ„์‚ฐํ•˜๋ฉด ๋œ๋‹ค. ๋ถ€์ ํ•ฉ ๋ฌธ์„œ์˜ ๊ฒฝ์šฐ ๋บ„์…ˆ(๊ณ„์‚ฐ ๊ฐ’์„ ์Œ์ˆ˜๋กœ)์„ ํ•ด์•ผํ•จ์„ ์œ ์˜ํ•˜์ž.

์ •๋‹ต์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

์ตœ์ดˆ์งˆ์˜ $q_0$ = { 1, 1, 0, 0 } 

์ˆ˜์ •์งˆ์˜ $q_m$= {1.4, 2.5, 1, 0}

 

์ด๋Ÿฐ ์‹์œผ๋กœ ์งˆ์˜๊ฐ€ ๋Š˜์–ด๋‚จ์„ Query Extension(์งˆ์˜ ํ™•์žฅ)์ด๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค.

 

๋ธ”๋กœ๊ทธ์˜ ์ •๋ณด

JiwonDev

JiwonDev

ํ™œ๋™ํ•˜๊ธฐ