JiwonDev

#6-1 ์ •๋ณด๊ฒ€์ƒ‰ ์„ฑ๋Šฅ ํ‰๊ฐ€ (P, R, F1, PRC)

by JiwonDev

# ์ •๋ณด๊ฒ€์ƒ‰์˜ ์„ฑ๋Šฅ์€ ์–ด๋–ป๊ฒŒ ํ‰๊ฐ€ํ• ๊นŒ?

1. Effectiveness, (ํšจ๊ณผ์„ฑ, ์‚ฌ์šฉ์ž ๋งŒ์กฑ๋„)

์ •ํ™•๋ฅ Precision(๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ ์ค‘ ์ ํ•ฉ๋ฌธ์„œ์˜ ๋น„์œจ), ์žฌํ˜„์œจRecall(์ „์ฒด ์ ํ•ฉ ๋ฌธ์„œ์ค‘ ์ฐพ์€ ๋น„์œจ), F์ง€ํ‘œ 

 

2. Efficiency(ํšจ์œจ์„ฑ)

์‹œ๊ฐ„, ๊ณต๊ฐ„ ๋ณต์žก๋„ ( ๋ฌธ์„œ๋‹น ํ‰๊ท  ์ƒ‰์ธ์†๋„, ๊ฒ€์ƒ‰์†Œ์š”์‹œ๊ฐ„ )

-> ์ด๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ฑ๋Šฅ์˜ ์˜์—ญ์ด๋ฏ€๋กœ ์ด ๊ธ€์—์„œ ๋‹ค๋ฃจ์ง€๋Š” ์•Š๋Š”๋‹ค.


# ๊ทธ๋ƒฅ ์ •๋‹ต์„ ๋งž์ถ˜ ๋น„์œจ๋กœ ํ‰๊ฐ€ํ•˜๋ฉด ๋˜๋Š”๊ฑฐ ์•„๋‹Œ๊ฐ€์š”?

๊ทธ๊ฑธ ์ •ํ™•๋„(Accuracy)๋ผ๊ณ ํ•ฉ๋‹ˆ๋‹ค.

์ด๊ฑด ์˜ˆ๋ฅผ ํ•œ๋ฒˆ ๋“ค์–ด๋ณด๋ฉด ์™œ ์ด๊ฒŒ ๊ตฌ๋ฆฐ์ง€ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ™˜์ž 100๋ช…์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๊ณ , ๊ทธ ์ค‘ 5๋ช…์˜ ํ™˜์ž๊ฐ€ ์•…์„ฑ ์ข…์–‘์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๊ณ  ์•…์„ฑ์ข…์–‘์„ ํƒ์ง€ํ•˜๋Š” ๋ชจ๋ธ A๊ฐ€ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ด…์‹œ๋‹ค.

๋ชจ๋ธ A : ์•„๋ฌด๋Ÿฐ ๋™์ž‘์—†์ด ๋ชจ๋“  ํ™˜์ž 100๋ช…์ด ๋ชจ๋‘ ์ •์ƒ์ด๋ผ๊ณ  ํŒ๋‹จ, 100๋ช…์ค‘ 95๋ช…์€ ์ง„์งœ ์ •์ƒ์ธ์ด๊ณ  5๋ช…์€ ํ‹€๋ ธ์œผ๋‹ˆ 0.95(95%)

 

๋ชจ๋ธA๊ฐ€ ์ •๋ง ์ข‹์€ ๊ฒ€์ƒ‰๋ชจ๋ธ์ผ๊นŒ์š”? ๋‹น์—ฐํžˆ ์•„๋‹™๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ๋ฐ์ดํ„ฐ ์ž์ฒด๊ฐ€ ํ•œ์ชฝ์œผ๋กœ ๋ชฐ๋ ค์žˆ๋Š” ๊ฒฝ์šฐ, ๋‹จ์ˆœ ๊ณ„์‚ฐํ•œ ์ •ํ™•๋„(Accuracy)๋Š” ๋ฏฟ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. 

 


# ์ •ํ™•๋ฅ ๊ณผ ์žฌํ˜„์œจ (Precision & Recall), F1 ์ง€ํ‘œ

์ •ํ™•๋ฅ : ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ์—์„œ ์ ํ•ฉ ๋ฌธ์„œ์˜ ๋น„์œจ $ = \frac{๊ฒ€์ƒ‰๋œ ์ ํ•ฉ ๋ฌธ์„œ ์ˆ˜}{๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ ์ˆ˜}$

์žฌํ˜„์œจ : ์ „์ฒด ์ ํ•ฉ ๋ฌธ์„œ์—์„œ ์ฐพ์•„๋‚ธ ์ ํ•ฉ ๋ฌธ์„œ์˜ ๋น„์œจ  $ = \frac{๊ฒ€์ƒ‰๋œ ์ ํ•ฉ ๋ฌธ์„œ ์ˆ˜}{์ ํ•ฉ ๋ฌธ์„œ ์ˆ˜}$

 

์ „์ฒด ๋ฌธ์„œ์ง‘ํ•ฉ {D1,D2,D3...D200}์ด ์žˆ๊ณ  200๊ฐœ์˜ ๋ฌธ์„œ์ค‘ ์งˆ์˜ {Q}์— ์ ํ•ฉํ•œ ๋ฌธ์„œ๊ฐ€ 5๊ฐœ๊ฐ€ ํฌํ•จ๋˜์–ด์žˆ๋‹ค.

๊ฒ€์ƒ‰ํ–ˆ์„ ๋•Œ 6๊ฐœ์˜ ๋ฌธ์„œ๊ฐ€ ๊ฒ€์ƒ‰๋˜์—ˆ๊ณ , ๊ทธ ์ค‘ 4๊ฐœ๊ฐ€ ์ ํ•ฉ๋ฌธ์„œ๋ผ๋ฉด?

์ •ํ™•๋ฅ  : $ = \frac{๊ฒ€์ƒ‰๋œ์ ํ•ฉ๋ฌธ์„œ์ˆ˜}{๊ฒ€์ƒ‰๋œ๋ฌธ์„œ์ˆ˜}  = \frac{4}{6} = 0.6666\dots$

์žฌํ˜„์œจ:  $ = \frac{๊ฒ€์ƒ‰๋œ์ ํ•ฉ๋ฌธ์„œ์ˆ˜}{์ ํ•ฉ๋ฌธ์„œ์ˆ˜}  = \frac{4}{5} = 0.8$

 

Accuracy(์ •ํ™•๋„)๋Š” ์œ„์— ์„ค๋ช…ํ•œ ๋‹จ์ˆœํžˆ ์ •๋‹ต ๊ฐœ์ˆ˜๋ฅผ ์ „์ฒด ๋ฌธ์„œ ๊ฐœ์ˆ˜๋กœ ๋‚˜๋ˆˆ ๊ฐ’์ด๋‹ค.

 

์ฐธ๊ณ ๋กœ ๊ฒ€์ƒ‰์‹œ์Šคํ…œ๋งˆ๋‹ค ์ •ํ™•๋ฅ , ์žฌํ˜„์œจ์˜ ์ค‘์š”์„ฑ์ด ๋‹ฌ๋ผ์ง„๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด ํŠนํ—ˆ/๋ฒ•๋ฅ  ๋ถ„์•ผ์˜ ๊ฒ€์ƒ‰์—์„œ๋Š” ์ „์ฒด ์ ํ•ฉ๋ฌธ์„œ๋ฅผ ์ฐพ๋Š” ์žฌํ˜„์œจ์„ ๋†’์ด๋Š”๊ฒŒ ์ค‘์š”ํ•˜๋ฉฐ

์ผ๋ฐ˜์ ์ธ ์›น ๊ฒ€์ƒ‰์—์„œ๋Š” ๋‚˜์—๊ฒŒ ์ ํ•ฉํ•œ ๋ฌธ์„œ๋งŒ ๋ณด์—ฌ์ฃผ๋Š” ์ •ํ™•๋ฅ ์„ ๋†’์ด๋Š”๊ฒŒ ์ค‘์š”ํ•˜๋‹ค.

(์ผ๋ฐ˜ ์‚ฌ์šฉ์ž๋“ค์€ ๊ฒ€์ƒ‰์‹œ์Šคํ…œ์ด ๊ฐ€์ง„ ์ „์ฒด ์ ํ•ฉ๋ฌธ์„œ๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š๋‹ค.)

 

์ •ํ™•๋ฅ ์ด ์—„์ฒญ ์ข‹์€๋ฐ ์žฌํ˜„์œจ์ด ๋„ˆ๋ฌด ๋‚ฎ์€ ์‹œ์Šคํ…œ, ์žฌํ˜„์œจ์ด ๋›ฐ์–ด๋‚˜์ง€๋งŒ ์ •ํ™•๋ฅ ์ด ๋‚ฎ์€ ์‹œ์Šคํ…œ

๋‘ ๊ฐ€์ง€๋ฅผ ๋™์‹œ์— ๋น„๊ต. ์ฆ‰ (์ •ํ™•๋ฅ +์žฌํ˜„๋ฅ )์˜ ์ ์ˆ˜๋ฅผ ๋น„๊ตํ•ด์„œ ๊ฒ€์ƒ‰๋ชจ๋ธ์„ ํ‰๊ฐ€ ํ•  ์ˆ˜๋Š” ์—†์„๊นŒ?


# F - Measure (F ์ง€ํ‘œ)

์‹ค์ œ๋กœ ์ด๋ฅผ ์–ด๋–ป๊ฒŒ ํ• ์ง€ ๊ณ ๋ฏผํ•˜๋‹ค ๋‚˜์˜จ ๊ฒƒ์ด ์กฐํ™”ํ‰๊ท ์„ ์‚ฌ์šฉํ•˜๋Š” F์ง€ํ‘œ์ด๋‹ค.

์กฐํ™”ํ‰๊ท ์ด ๋ญ์ฃ ?

๋”๋ณด๊ธฐ

 

Harmonic Mean (์กฐํ™” ํ‰๊ท )

์ผ๋ฐ˜์ ์œผ๋กœ ์—ฌ๋Ÿฌ ์ˆ˜์˜ ํ‰๊ท ์„ ๋‚ผ ๋•Œ, ์šฐ๋ฆฌ๋Š” ์ „๋ถ€ ๋ง์…ˆํ•˜์—ฌ ๋‚˜๋ˆ„๋Š” ์‚ฐ์ˆ  ํ‰๊ท (Arithmetic Mean)์„ ์‚ฌ์šฉํ•œ๋‹ค. ์กฐํ™”ํ‰๊ท ์€ (์ฃผ์–ด์ง„ ์ˆ˜๋“ค์˜ ์—ญ์ˆ˜)๋ฅผ ๋”ํ•˜๊ณ  ํ‰๊ท  ๋‚ธ ๊ฐ’์˜ ์—ญ์ˆ˜๋ฅผ ์ทจํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค.


์ด๋Ÿฌํ•œ ์กฐํ™”ํ‰๊ท ์€ ์Œ์•…์˜ ํ™”์Œ(์ฃผํŒŒ์ˆ˜์˜ ์—ญ์ˆ˜)๋‚˜ ์†๋„์˜ ํ‰๊ท ์„ ๊ตฌํ•  ๋•Œ ์‚ฌ์šฉ๋œ๋‹ค.

๊ฐ™์€ ๊ฑฐ๋ฆฌ S๋ฅผ ๊ฐˆ๋•Œ๋Š” 10m/s, ์˜ฌ๋•Œ๋Š” 20m/s ์œผ๋กœ ์™•๋ณต์ฃผํ–‰ํ•˜์˜€๋‹ค๋ฉด ํ‰๊ท ์†๋ ฅ์€ ๋‹จ์ˆœํ•œ ์‚ฐ์ˆ ํ‰๊ท ์œผ๋กœ 15m/s๋ผ๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์‹ค์ œ ์‹œ๊ฐ„๊ณผ ๊ฑฐ๋ฆฌ๋ฅผ ๊ณ„์‚ฐํ•ด ์†๋ ฅ์„ ์ธก์ •ํ•ด๋ณด๋ฉด ๋Œ€๋žต 13.3m/s ์ •๋„์˜ ์†๋„๊ฐ€ ๋‚˜์˜จ๋‹ค.

 

์™œ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ค๋ฅด๊ฒŒ ๋‚˜์˜ค๋‚˜๋ฉด ์†๋ ฅ์€ $ \frac{๊ฑฐ๋ฆฌ}{์‹œ๊ฐ„} $ ์ธ๋ฐ, ์†๋ ฅ์ด ๋‹ค๋ฅด๋ฉด ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„๋„ ๋‹ฌ๋ผ์ง€๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋ž˜์„œ ํ•ด๋‹น ๊ณต์‹์„ ์‹œ๊ฐ„์— ๋Œ€ํ•ด์„œ ์•„๋ž˜์™€ ๊ฐ™์ด $ \frac{๊ฑฐ๋ฆฌ}{์†๋ ฅ} $ ์œผ๋กœ ๊ตฌํ•ด์•ผ ์‰ฝ๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

x ๋Š” ์†๋ ฅ์˜ ํ‰๊ท ๊ฐ’์ด๋‹ค.

์—ฌ๊ธฐ์—์„œ x(ํ‰๊ท  ์†๋ ฅ)์— ๋Œ€ํ•ด ์ „๊ฐœํ•˜๋ฉด ์œ„์™€ ๊ฐ™์€ ์กฐํ™”ํ‰๊ท  ๊ณต์‹์ด ๋‚˜์˜ค๊ฒŒ ๋œ๋‹ค. ์ฐธ๊ณ ๋กœ ๊ฐ’์ด 2๊ฐœ (a,b) ์ผ๋•Œ ์กฐํ™”ํ‰๊ท (x)๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ณ„์‚ฐํ•˜๊ธฐ ์‰ฌ์šด ๊ณต์‹์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.


์ •ํ™•๋ฅ , ์žฌํ˜„์œจ์€ ๋ถ„์ˆ˜๋กœ ์ด๋ฃจ์–ด์ง„ ๊ฐ’์ด๊ธฐ์— ์กฐํ™”ํ‰๊ท ์„ ์‚ฌ์šฉํ•ด์•ผํ•œ๋‹ค.

์—ฌ๊ธฐ์— ํ•„์š”์— ๋”ฐ๋ผ ์ •ํ™•๋ฅ (P)๊ณผ ์žฌํ˜„๋ฅ (R)์— ๊ฐ€์ค‘์น˜ $ \alpha $๋ฅผ ๋‘” ๊ฐ’์ด F-์ง€ํ‘œ์ด๋‹ค.

๋‹ค๋งŒ ๋ณดํ†ต 2๊ฐœ์˜ ๊ฐ’์— ๋Œ€ํ•ด์„œ ์กฐํ™”ํ‰๊ท ์€ ์‰ฝ๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต์‹์„ ์‚ฌ์šฉํ•œ๋‹ค.

    $(a,b)$์˜ ์กฐํ™”ํ‰๊ท  ๊ณต์‹ = $ \frac{2ab}{a+b} $

๊ทธ๋ž˜์„œ ๊ฐ€์ค‘์น˜๋ฅผ ์ด์šฉํ•ด์„œ ์œ„ ๊ณต์‹ ๋ชจ์–‘์œผ๋กœ ๊ณ„์‚ฐํ•˜๊ฒŒ๋˜๋ฉด ์œ„์•„๋ž˜๊ฐ€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ชจ์–‘์œผ๋กœ ๋‚˜์˜ค๊ฒŒ ๋˜๋Š”๋ฐ ์ด๋•Œ ๊ณ„์‚ฐ๋œ ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ๊ณ„์‚ฐํ•˜๊ธฐ ํŽธํ•˜๊ฒŒ $ \beta $ ๋กœ ์น˜ํ™˜ํ–ˆ๋‹ค.

์–ด๋ ค์šด ์ˆ˜์‹์ด ์•„๋‹ˆ๋‹ค. P์˜ ๊ฐ€์ค‘์น˜๊ฐ€ (a)๋ผ๋ฉด  R์€ (1-a)์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๊ฐ€์ง„๋‹ค.

์ฐธ๊ณ ๋กœ ๊ณ„์‚ฐํ•ด๋ณด๋ฉด ์•Œ๊ฒ ์ง€๋งŒ, $ \beta $ ๊ฐ’์„ ๋ณด๊ณ  ๊ฐ€์ค‘์น˜ $ \alpha $ ๋ฅผ ์œ ์ถ” ํ•  ์ˆ˜ ์žˆ๋‹ค.

$ \beta < 1$ ์ •ํ™•๋ฅ (P)์˜ ๊ฐ€์ค‘์น˜ $ \alpha $ ๊ฐ€ ๋” ๋†’์€ ๊ฒƒ์ด๊ณ 

$ \beta > 1$ ์ด๋ฉด ์žฌํ˜„์œจ(R)์˜ $ (1-\alpha) $ ๊ฐ€์ค‘์น˜๋ฅผ ๋” ๋†’๊ฒŒ ์ค€ ๊ฒƒ์ด๋‹ค.


# F-1 ์ง€ํ‘œ

๋งŒ์•ฝ ์—ฌ๊ธฐ์—์„œ ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ๋‘˜ ๋‹ค ๋˜‘๊ฐ™์ด 50% (0.5)๋ฅผ ๋ถ€์—ฌํ•œ๋‹ค๋ฉด ์œ„ ์‹์—์„œ $ \beta $ ๊ฐ’์€ 1์ด ๋˜์–ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฐ„๋‹จํ•œ ์ˆ˜์‹์ด ๋‚˜์˜ค๊ฒŒ ๋œ๋‹ค. ์ด๋ฅผ $ F_1 Measure $๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค.

 

์ž ์ด์ œ ์šฐ๋ฆฌ๋Š” ์œ„์˜ ๋ณต์žกํ•œ ์ˆ˜์‹์„ ๋‹ค ๋จธ๋ฆฌ์†์— ์ง€์šฐ๊ณ , ์ •ํ™•๋ฅ ๊ณผ ์žฌํ˜„๋ฅ ์˜ ๊ฐ€์ค‘์น˜๋ฅผ 50๋Œ€ 50์œผ๋กœ ๋™์ผํ•˜๊ฒŒ ์ค€ $ F_1 $ ์ง€ํ‘œ์˜ ๊ณต์‹๋งŒ ์™ธ์šฐ๋ฉด ๋œ๋‹ค. ์ฐธ๊ณ ๋กœ ์ด๋Š” (์†๋ ฅ a, ์†๋ ฅ b)์˜ ์กฐํ™”ํ‰๊ท  ๊ณต์‹๊ณผ ๊ฐ™๋‹ค.

    $F_1$ $Measure$ $= \frac{2 * P * R}{P + R}$

 

* ์ฐธ๊ณ ๋กœ F์˜ ์˜๋ฏธ๋Š” ๊ทธ๋ƒฅ ์ด ์ง€ํ‘œ๋ฅผ ๋ฐœํ‘œํ•œ ํ•™ํšŒ(MUC-4, 1992)์—์„œ ์ด๋ฆ„์ง€์€๊ฑฐ๋ผ ๋ณ„ ์˜๋ฏธ ์—†๋‹ค. G(Geometry ํ‰๊ท  ์ง€ํ‘œ)์™€ ํ•จ๊ป˜ ์„ค๋ช…ํ•˜๋ฉด์„œ ๊ทธ๋ƒฅ H๋Š” ์ด๋ฏธ ๋‹ค๋ฅธ ๊ณณ์—์„œ ์‚ฌ์šฉํ•˜๊ณ ์žˆ์œผ๋‹ˆ F๋ผ๊ณ  ์ง€์€ ๋“ฏํ•˜๋‹ค.

 


# ์ •ํ™•๋ฅ ๊ณผ ์žฌํ˜„์œจ์˜ ํ•œ๊ณ„

์ ํ•ฉ๋ฌธ์„œ์˜ ๊ฐœ์ˆ˜๊ฐ€ 10๊ฐœ์ธ ์งˆ์˜ Q์— ๋Œ€ํ•˜์—ฌ ์ ํ•ฉ๋ฌธ์„œ๊ฐ€ { D0 } ํ•˜๋‚˜์ผ ๋•Œ

System A : 5๊ฐœ์˜ ๋ฌธ์„œ ๊ฒ€์ƒ‰ $ \{(rank_1:D_4), (rank_2: D_3), (rank_3: D_1), (rank_4:D_2), (rank_5:D_0)\} $

System B : 5๊ฐœ์˜ ๋ฌธ์„œ ๊ฒ€์ƒ‰ $ \{(rank_1: D_0), (rank_2: D_1), (rank_3: D_2), (rank_4:D_3), (rank_5:D_4)\} $

์ด ๋‘ ์‹œ์Šคํ…œ์˜ ์ •ํ™•๋ฅ (Precision)๊ณผ ์žฌํ˜„์œจ(Recall)์„ ๊ฐ๊ฐ ๊ตฌํ•˜๋ฉด

 

์‹œ์Šคํ…œ A $P = 1/5, R = 1/10$ ์ด๋‹ค.

์‹œ์Šคํ…œ B $P = 1/5, R = 1/10$ ์ด๋‹ค.

๋‹น์—ฐํ•˜ P์™€ R์˜ ๊ฐ’์ด ๊ฐ™์œผ๋‹ˆ, ์ด ๋‘˜์˜ ํ‰๊ท ์„ ๋‚ธ $ F_1 $ ์ง€ํ‘œ์˜ ๊ฐ’๋„ ๋™์ผํ•˜๋‹ค. 

ํ•˜์ง€๋งŒ ๋‹จ์ˆœํžˆ ์ƒ๊ฐํ•ด๋„ ์‹ค์ œ ์„ฑ๋Šฅ์€ ์ ํ•ฉ๋ฌธ์„œ๋ฅผ Rank1์œผ๋กœ ์ฐพ์•„๋‚ธ ์‹œ์Šคํ…œ B๊ฐ€ ๋” ์šฐ์ˆ˜ํ•œ ๊ฒ€์ƒ‰์‹œ์Šคํ…œ์ด๋ผ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ ‡๋‹ค๋ฉด ์ˆœ์œ„(Rank) ์ •๋ณด๊นŒ์ง€ ๊ณ ๋ คํ•ด์„œ ์ •๋ณด๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ํ‰๊ฐ€ํ• ๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผํ• ๊นŒ?


# Ranking์„ ํฌํ•จํ•œ ์ •๋ณด๊ฒ€์ƒ‰ ์„ฑ๋Šฅํ‰๊ฐ€

1. Precision-Recall Curve (PRC)

์ •ํ™•๋ฅ (P)์™€ ์žฌํ˜„๋ฅ (R)๋กœ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆฌ๋Š” ๋ฐฉ๋ฒ•. ๋ณดํ†ต ์ •ํ™•๋ฅ ์„ ์„ธ๋กœ(y)์ถ•์œผ๋กœ ์‚ฌ์šฉํ•œ๋‹ค.

 

* ๋ฌผ๋ก  ๋‹จ์ˆœํžˆ P-R ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆฌ๋ฉด ๊ทธ๋ž˜ํ”„์˜ ๋ชจ์–‘์ด ํ†ฑ๋‹ˆ๋ชจ์–‘(sawtooth)๋ผ์„œ ์ œ๋Œ€๋กœ ํ‰๊ฐ€ ํ•  ์ˆ˜ ์—†๋‹ค.

์ด ์ ํ•ฉ๋ฌธ์„œ๊ฐ€ 5๊ฐœ๊ฐ€ ์žˆ๊ณ , ์งˆ์˜๋ฌธ(Q)์— ๋Œ€ํ•˜์—ฌ 8๊ฐœ์˜ ๋ฌธ์„œ๊ฐ€ Rank1~8๋กœ ์ •๋ ฌ๋˜์–ด ๊ฒ€์ƒ‰๋˜์—ˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์€ ํ‘œ๊ฐ€ ๋‚˜์˜จ๋‹ค. 

$Rank_1$ ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ์ง‘ํ•ฉ $ \{555\}$ , $R:\frac{1}{5}$  $P:\frac{1}{1} $

$Rank_2$ ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ์ง‘ํ•ฉ $ \{555,888\}$ , $R:\frac{1}{5}$  $P:\frac{1}{2} $

$Rank_3$ ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ์ง‘ํ•ฉ $ \{555,888,111\}$ , $R:\frac{2}{5}$  $P:\frac{2}{3} $

$Rank_4$ ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ์ง‘ํ•ฉ $ \{555,888,111,333\}$ , $R:\frac{2}{5}$  $P:\frac{2}{4} $

... ์ด๋Ÿฐ์‹์œผ๋กœ ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ๋ฅผ Rank ์ˆœ์„œ๋Œ€๋กœ 1๊ฐœ์”ฉ ๋Š˜๋ฆฌ๋ฉฐ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆฌ๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. (๊ฒ€์ƒ‰๋œ ์ด ๋ฌธ์„œ ๊ฐœ์ˆ˜๋งŒํผ ์ ์ด ์ฐํžŒ๋‹ค.)

ํ†ฑ๋‹ˆ๋ชจ์–‘ ๊ทธ๋ž˜ํ”„์˜ ๋ชจ์–‘์ด ์„ ํ˜•์ด ์•„๋‹ˆ๋ฉด ๋‹ค๋ฅธ ๊ทธ๋ž˜ํ”„์™€ ๋น„๊ตํ•˜๊ธฐ ์–ด๋ ต๋‹ค.

์ด ๊ทธ๋ž˜ํ”„์˜ ๋ชจ์–‘์„ ์ด์šฉํ•ด์„œ Rank์ด ๋ฐ˜์˜๋œ ์ ์ˆ˜๋ฅผ ๋งค๊ธฐ๋Š” ๋ฐฉ๋ฒ•์ธ๋ฐ, ๋‹น์—ฐํžˆ ์ €๋Ÿฐ ํ†ฑ๋‹ˆ๋ชจ์–‘ ๊ทธ๋ž˜ํ”„๋ฅผ ๋น„๊ตํ•˜๊ธฐ๊ฐ€ ์–ด๋ ค์›Œ์„œ ๊ทธ๋ƒฅ ์‚ฌ์šฉํ•˜์ง€๋Š” ์•Š๊ณ  ๋ณด๊ฐ„(๋ณด์ •, Interpolated)ํ•˜์—ฌ ์‚ฌ์šฉํ•œ๋‹ค.


2. Interpolated PRC (๋ณด๊ฐ„ PRC)

PRC์˜ ๊ทธ๋ž˜ํ”„ ๋ชจ์–‘์„ ํ†ฑ๋‹ˆ๋ชจ์–‘์ด ์•„๋‹Œ, ์™„๋งŒํ•œ ๋ชจ์–‘์œผ๋กœ ๋ฐ”๊พธ๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค.

์žฌํ˜„๋ฅ (r) ํ•œ ์ง€์ ์„ ์ •ํ•ด์„œ, ๊ทธ ์ง€์ ๋ณด๋‹ค ์žฌํ˜„๋ฅ ์ด ๊ฐ™๊ฑฐ๋‚˜ ํฐ ์ ๋“ค ์ค‘ ๊ฐ€์žฅ ํฐ max ์ •ํ™•๋ฅ  ๊ฐ’์„ ์ฐพ๋Š”๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด $P(0.2)$๋Š” ์žฌํ˜„๋ฅ (R)์ด $0.2$ ๋ณด๋‹ค ๊ฐ™๊ฑฐ๋‚˜ ํฐ ์ง€์ ์ค‘ ๊ฐ€์žฅ ํฐ ์ •ํ™•๋ฅ  ๊ฐ’์„ ์˜๋ฏธํ•œ๋‹ค.

์•„๋ž˜ ๊ทธ๋ž˜ํ”„์—์„œ๋Š” ์žฌํ˜„๋ฅ ์ด $ 0.2 $์ผ ๋•Œ ์ •ํ™•๋ฅ ์ด $ 1.0 $์œผ๋กœ ๊ฐ€์žฅ ํฌ๋ฏ€๋กœ $ P(0.2) = 1 $

์ด๋Ÿฐ์‹์œผ๋กœ ๊ณ„์† ๊ตฌํ•ด๋‚˜๊ฐ€๋ฉด ์•„๋ž˜ ๊ทธ๋ž˜ํ”„์˜ โ— ์ ๋งŒ ๋‚จ๊ฒŒ๋˜๊ณ , ๋‚˜๋จธ์ง€๋Š” ์—†์–ด์ง€๊ฒŒ ๋˜์–ด ๊ทธ๋ž˜ํ”„ ๋ชจ์–‘์ด ์™„๋งŒํ•œ ๋ฐ˜๋‹ฌ๋ชจ์–‘์œผ๋กœ ๋ฐ”๋€๋‹ค.

$ P(0.2) = 1.0 $ , $ P(0.4) = 0.67 $ , $ P(0.6) = 0.5 $

๋ชจ๋“  P(์žฌํ˜„๋ฅ ) ์— ๋Œ€ํ•ด ์ˆ˜์‹ญ, ์ˆ˜๋ฐฑ๋งŒ๊ฐœ์˜ ์ ์„ ์ฐ์–ด ๋ณด๊ฐ„์ •ํ™•๋ฅ ์„ ๊ตฌํ•  ์ˆ˜ ๋„ ์žˆ์ง€๋งŒ, ๋ณดํ†ต $ (0, 0.1, 0.2 \dots 1.0) $ 10% ๋‹จ์œ„๋กœ 11๊ฐœ์˜ ์žฌํ˜„๋ฅ ์„ ๊ตฌํ•ด ๊ตฌํ•ด ์™„๋งŒํ•œ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆฐ๋‹ค. (Averaged 11-point P/R graph)

์•„๋ž˜ ๋นจ๊ฐ„์ƒ‰ ๊ทธ๋ž˜ํ”„์—์„œ๋Š”, ์–ด๋–ค ์‹œ์Šคํ…œ์ด ๋” ์ข‹์€์ง€ ๊ทธ๋ž˜ํ”„์˜ ๋„“์ด๋ฅผ ๊ตฌํ•ด ํ•œ๋ˆˆ์— ํŒŒ์•… ํ•  ์ˆ˜ ์žˆ๋‹ค. (์ดˆ๋ก > ํŒŒ๋ž‘)

์˜ค๋ฅธ์ชฝ์— ํŒŒ๋ž€์ƒ‰๊ณผ ์ดˆ๋ก์ƒ‰ ๊ทธ๋ž˜ํ”„์ค‘ ์–ด๋–ค ๊ทธ๋ž˜ํ”„๊ฐ€ ๋” ์ ์ˆ˜๊ฐ€ ๋†’์€์ง€ ๊ทธ๋ž˜ํ”„์˜ ๋„“์ด๋ฅผ ๊ตฌํ•ด์„œ ์‰ฝ๊ฒŒ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

* ๋ณดํ†ต ๊ทธ๋ž˜ํ”„์˜ ์ ์ˆ˜๋ฅผ ์•„๋ž˜ ๋„“์ด๋กœ(AUC, Area Under the Curve) ๊ตฌํ•ด์„œ ์ด๋ฅผ AUPRC๋ผ๊ณ  ๋ถ€๋ฅด๊ธฐ๋„ ํ•œ๋‹ค.


# ๊ทผ๋ฐ ์งˆ์˜๋ฌธ๋งˆ๋‹ค ๊ทธ๋ž˜ํ”„๊ฐ€ ๋‹ค๋ฅด๊ฒŒ ๋‚˜์˜ฌ๊ฑด๋ฐ, ์–ด๋–ค ์งˆ์˜๋ฌธ์„ ๊ธฐ์ค€์œผ๋กœ ํ•ด์•ผํ• ๊นŒ?

๋ณดํ†ต ๊ฒ€์ƒ‰๋ชจ๋ธ์„ ํ‰๊ฐ€ ํ•  ๋•Œ๋Š” ์ตœ์†Œ 30๊ฐœ, ๋ณดํ†ต 50๊ฐœ ์ด์ƒ์˜ ํ…Œ์ŠคํŠธ์šฉ ์งˆ์˜๋ฌธ$(Q_1\dots Q50)$์„ ๊ฐ€์ง€๊ณ  ํ‰๊ฐ€ํ•œ๋‹ค.

๊ทธ ๊ฐ๊ฐ์˜ ์งˆ์˜๋ฌธ์— ๋Œ€ํ•ด $P(0.0, 0.1 \dots 1.0)$ ์„ ๊ตฌํ•˜๊ณ  ๊ฐ ์žฌํ˜„๋ฅ ๋งˆ๋‹ค ํ‰๊ท ์„ ๊ตฌํ•ด ์‚ฌ์šฉํ•œ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด $Q_1$ :: $P(0.0) = 0.1$   $Q_2$ :: $P(0.0) = 0.2$  ...  $Q50$ :: $P(0.0) = 0.15$

์ด๋ ‡๊ฒŒ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์™”๋‹ค๋ฉด $P(0.0)$ ๊ฐ’์˜ ํ‰๊ท ์œผ๋กœ $P(0,0)$ ์˜ ๊ฐ’์„ ๊ฒฐ์ •ํ•œ๋‹ค.

 


# ์˜ˆ์ œ๋ฅผ ํ†ตํ•ด ์ข€ ๋” ์•Œ์•„๋ณด์ž

์ „์ฒด ์ ํ•ฉ๋ฌธ์„œ์˜ ์ˆ˜๊ฐ€ 4๊ฐœ๊ฐ€ ์žˆ๊ณ , ์งˆ์˜ ๋ฌธ์„œ์— ๋Œ€ํ•ด ์ด 15๊ฐœ์˜ ๋ฌธ์„œ๊ฐ€ Ranking ๋˜์–ด ๊ฒ€์ƒ‰๋˜์—ˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ณด์ž.

์œ„์—์„œ ๋ฐฐ์šด๋Œ€๋กœ ํ‘œ๋ฅผ ๊ทธ๋ ค๋„ ๋˜์ง€๋งŒ, ์‚ฌ์‹ค Interpolated PRC์—์„œ๋Š” ์ ํ•ฉ๋ฌธ์„œ๊ฐ€ ๋‚˜์˜ฌ๋•Œ๋งŒ ์ •ํ™•๋ฅ ์˜ ๊ฐ’์ด ๋ฐ”๋€Œ๋ฏ€๋กœ ์ „๋ถ€ ๊ตฌํ•˜์ง€์•Š๊ณ  ์ ํ•ฉ๋ฌธ์„œ์˜ Rank ์ง€์ ์—๋งŒ ์ •ํ™•๋ฅ ์„ ๊ตฌํ•ด์ค˜๋„ ๋œ๋‹ค.

P( ์žฌํ˜„๋ฅ  ) = ํ•ด๋‹น ์žฌํ˜„๋ฅ (R)๋ณด๋‹ค ๊ฐ™๊ฑฐ๋‚˜ ํฐ ์ง€์ ์—์„œ ๊ฐ€์žฅ ํฐ ์ •ํ™•๋ฅ (P)

$Rank_1$ ${ 1 }$ , ์ ํ•ฉ๋ฌธ์„œ 1/4๊ฐœ $ P(0.25) = 1 $

$Rank_2$ ${ 1,2 }$ ์ ํ•ฉ๋ฌธ์„œ 2/4๊ฐœ $ P(0.5) = 1 $

$Rank_4$ ${ 1,2,3,4 }$ ์ ํ•ฉ๋ฌธ์„œ 3/4๊ฐœ $ P(0.75) = 0.75 $

$Rank_15$ ${ 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 }$ ์ ํ•ฉ๋ฌธ์„œ 4/4๊ฐœ  $ P(1) = 0.27 $

์ ํ•ฉ๋ฌธ์„œ 4๊ฐœ์˜ Rank ์ง€์ ์—์„œ ์ •ํ™•๋ฅ ์„ ๋ชจ๋‘ ๊ตฌํ–ˆ์œผ๋‹ˆ ์‚ฌ์ž‡๊ฐ’์œผ๋กœ 11๊ฐœ๋ฅผ ์‰ฝ๊ฒŒ ๊ณ„์‚ฐ ํ•  ์ˆ˜ ์žˆ๋‹ค.

$P(0.0) = 1$ , $P(0.1) = 1$ , $P(0.2) = 1$

$P(0.3) = 1$ , $P(0.4) = 1$ , $P(0.5) = 1$

$P(0.6) = 1$ , $P(0.7) = 1$ , $P(0.8) = 0.75$ 

$P(0.9) = 0.75$   ,   $P(1.0) = 0.27$ 

ํ•œ๋ฒˆ ๋” ๋งํ•˜์ง€๋งŒ, 'P(์žฌํ˜„๋ฅ )์ด ๊ฐ™๊ฑฐ๋‚˜ ํฐ ๊ฐ’' ์ค‘์—์„œ ๊ฐ€์žฅ ํฐ ์ •ํ™•๋ฅ ์„ ์ ์œผ๋ฉด ๋œ๋‹ค.

 

๊ทธ๋ž˜ํ”„๋ง๊ณ  ํ•˜๋‚˜์˜ ํ‰๊ท  ๊ฐ’์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฐฉ๋ฒ•์€ ์—†์„๊นŒ?

=> ํ‰๊ท ์ •ํ™•๋ฅ  (Mean Average Precision, MAP)

 

๊ธ€ ๋‚ด์šฉ์ด ๋„ˆ๋ฌด ๊ธธ์–ด์ ธ ํ•œ๋ฒˆ ๋Š๊ณ , ๋‹ค์Œ ๊ธ€์— ์„ค๋ช…ํ•˜๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.



# ํ€ด์ฆˆ

์ฐธ๊ณ ๋กœ 3๋ฒˆ ๋ฌธ์ œ๋Š” ๋‹ค์Œ ๊ธ€์—์„œ ๋‹ค๋ฅธ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์œผ๋กœ ํ•œ๋ฒˆ ๋” ์„ค๋ช…ํ• ๊ฑฐ๋‹ˆ ํŽธํ•˜๊ฒŒ ํ•œ๋ฒˆ ํ’€์–ด๋ณด๋ฉด ๋œ๋‹ค.

1. ๋‹ค์Œ ํ‘œ๋กœ ๋ถ€ํ„ฐ Accuracy, Precision, Recall, F1์„ ๊ตฌํ•˜์‹œ์˜ค
  Relevant Non-relevant
Retrieval 7 13
Not Retrieval 58 922

ํ’€์ด

๋”๋ณด๊ธฐ

์˜์–ด๋กœ ์ ํ˜€์žˆ์–ด์„œ ๋‹นํ™ฉํ–ˆ๊ฒ ์ง€๋งŒ, ์˜๋ฏธ๋งŒ ์ž˜ ์•Œ๊ณ ์žˆ์œผ๋ฉด ํฌ๊ฒŒ ์–ด๋ ต์ง€ ์•Š๋‹ค.

Relevant(๊ด€๋ จ๋œ, ์ ํ•ฉ ๋ฌธ์„œ), Retrieval(๊ฒ€์ƒ‰๋œ, ์งˆ์˜๋ฌธ์— ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ) ๋ฅผ ์˜๋ฏธํ•œ๋‹ค.

 

P(Precision, ์ •ํ™•๋ฅ )์€ ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ ์ค‘ ์ ํ•ฉ๋ฌธ์„œ์˜ ๋น„์œจ๋ฅผ ์˜๋ฏธํ•œ๋‹ค.

P =7/20

 

R(Recall, ์žฌํ˜„์œจ)์€ ์ „์ฒด ์ ํ•ฉ๋ฌธ์„œ ์ค‘ ๊ฒ€์ƒ‰๋œ ์ ํ•ฉ ๋ฌธ์„œ์˜ ๋น„์œจ๋ฅผ ์˜๋ฏธํ•œ๋‹ค.  ๋ถ„๋ชจ๊ฐ€ '์ „์ฒด ์ ํ•ฉ๋ฌธ์„œ ์ˆ˜'์ž„์„ ์œ ์˜ํ•˜์ž.

R = 7/58+7 = 7/65

 

F1 ์ง€ํ‘œ๋Š” ์กฐํ™”ํ‰๊ท ์˜ ๊ณต์‹์œผ๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

$F_1$ $= \frac{2 * P * R}{P + R}$

$ F_1 $ = 2 * P * R / P + R

$ F_1 $ = 2 * (7/20) * (7/65) / (7/20) + (7/65)

 

A(Accuracy ์ •ํ™•๋„) ๋Š” ๋‹จ์ˆœํžˆ ์ •๋‹ต์„ ๋งž์ถ˜ ๋น„์œจ์„ ์ „์ฒด๋ฌธ์„œ์˜ ์ˆ˜๋กœ ๋‚˜๋ˆ„๋ฉด ๋œ๋‹ค.

(์ ํ•ฉ๋ฌธ์„œ 7+ ๊ฒ€์ƒ‰์•ˆํ•œ ๋ฌธ์„œ 922) / (์ „์ฒด ๋ฌธ์„œ 7 + 13 + 58 + 922)

A = (7+922) / (7+13+58+922)

 

2. ์ ํ•ฉ๋ฌธ์„œ์˜ ์ด ๊ฐœ์ˆ˜๊ฐ€ 14์ธ ์งˆ์˜(Q)์— ๋Œ€ํ•ด 20๊ฐœ์˜ ๋ฌธ์„œ๊ฐ€ ๊ฒ€์ƒ‰๋˜์—ˆ์œผ๋ฉฐ, ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ ์ค‘ 5๊ฐœ์˜ ์ ํ•ฉ๋ฌธ์„œ๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ๋‹ค. ์งˆ์˜ (Q)์— ๋Œ€ํ•œ Precision, Recall, F1์„ ๊ตฌํ•˜์‹œ์˜ค

ํ’€์ด

๋”๋ณด๊ธฐ

P = 5/20

R = 5/14

 

F1 = 2*P*R / P + R

F1 = 2 * (5/20) * (5/14) / (5/20) + (5/14)

 

3. ๋‹ค์Œ ํ‘œ๋Š” ์งˆ์˜ Q์— ๋Œ€ํ•œ ๊ฒ€์ƒ‰๋ฌธ์„œ ์ง‘ํ•ฉ ์ „์ฒด๋ฅผ ๋ณด์ธ ๊ฒƒ์ด๋‹ค. ์งˆ์˜ Q์˜ ์ ํ•ฉ๋ฌธ์„œ์ง‘ํ•ฉ R = 
{ 800:1, 690:3, 700:3 ,500:2 } ๋ผ๊ณ  ํ•  ๋•Œ ์•„๋ž˜ ์งˆ๋ฌธ์— ๋‹ตํ•˜์‹œ์˜ค. ( ์ฐธ๊ณ . 800:1 ์˜๋ฏธ๋Š” D900 ๋ฌธ์„œ์˜ ์ ํ•ฉ๋„๊ฐ€ 1์ด๋ผ๋Š” ์˜๋ฏธ์ด๋‹ค. )
Rank Document No. ์ ํ•ฉ๋„
1 381 0
2 800 1
3 456 0
4 451 0
5 761 0
6 690 3
7 295 0
3-1 Precision, Recall, F1์„ ๊ตฌํ•˜์‹œ์˜ค

ํ’€์ด

๋”๋ณด๊ธฐ

๋ฌธ์ œ๊ฐ€ ํ—ท๊ฐˆ๋ฆด ์ˆ˜ ์žˆ๋Š”๋ฐ, ์งˆ์˜ Q์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๊ฐ€ ํ‘œ์—์žˆ๋Š” 7๊ฐœ๊ฐ€ ๋‚˜์˜จ ๊ฒƒ์ด๊ณ , ์ „์ฒด ๋ฌธ์„œ์ค‘ ์ ํ•ฉ๋ฌธ์„œ๊ฐ€ 3๊ฐœ(D800, D690, D830) ๋ผ๋Š” ์˜๋ฏธ์ด๋‹ค.

 

ํ‘œ๋ฅผ ๋ณด๋ฉด ์•Œ ์ˆ˜ ์žˆ์ง€๋งŒ ์งˆ์˜๋ฌธ Q์— ๋Œ€ํ•ด์„œ D800, D690 ์ด 2๊ฐœ์˜ ์ ํ•ฉ๋ฌธ์„œ๊ฐ€ ๊ฒ€์ƒ‰๋˜์—ˆ๋‹ค.

P = 2/7

R = 2/3

F1 = 2 * (2/7) * (2/3) / (2/7) + (2/3)

 

3-2 11-point P/R Graph์˜ ์ขŒํ‘œ๋ฅผ ๊ตฌํ•˜์‹œ์˜ค.

ํ’€์ด

๋”๋ณด๊ธฐ

์ตœ๋Œ€ ์ •ํ™•๋ฅ ๋งŒ ๊ตฌํ•˜๋ฉด ๋˜๋‹ˆ๊นŒ ์ „์ฒด ํ‘œ๋ฅผ ๋‹ค ๊ทธ๋ฆฌ์ง€ ๋ง๊ณ  ์ ํ•ฉํ•œ ๋ฌธ์„œ์˜ Rank๋งŒ ๋ณด๋ฉด ๋œ๋‹ค.

์ด ์ ํ•ฉ๋ฌธ์„œ๋Š” 3๊ฐœ๋ผ๊ณ  ํ–ˆ๊ณ , ์งˆ์˜(Q)์— ๋Œ€ํ•ด ์ ํ•ฉ๋ฌธ์„œ๊ฐ€ 2๊ฐœ๊ฐ€ ๊ฒ€์ƒ‰๋˜์—ˆ๋‹ค.

Rank 2, ์ด 2๊ฐœ ์ค‘ ์ ํ•ฉ๋ฌธ์„œ 1๊ฐœ{ ใ…, D800 }

Rank 6, ์ด 6๊ฐœ ์ค‘ ์ ํ•ฉ๋ฌธ์„œ 2๊ฐœ{ ใ…, D800, ใ…, ใ…, ใ…, D690 }

 

Rank2 ๊ธฐ์ค€ P= 1/2(0.5),   R=1/4(0.25)

Rank6 ๊ธฐ์ค€ P= 2/6(0.333),   R=2/4(0.5)

 

๊ทธ๋ž˜ํ”„ ๊ฐ’์€ P( ์žฌํ˜„์œจ ) ์—์„œ ํ•ด๋‹น ์žฌํ˜„์œจ(R)๋ณด๋‹ค ํฌ๊ฑฐ๋‚˜ ๊ฐ™์€ ๊ฐ’์ค‘ ์ตœ๋Œ€ ์ •ํ™•๋„์ด๋ฏ€๋กœ

์žฌํ˜„์œจ(R) 0.0 ~ 0.25๊นŒ์ง€๋Š” P 0.5๊ฐ€ ์ตœ๋Œ€๊ฐ’

์žฌํ˜„์œจ(R) 0.25์ดˆ๊ณผ ~ 0.5 ์ดํ•˜๊นŒ์ง€๋Š” P 0.333์ด ์ตœ๋Œ€๊ฐ’

์žฌํ˜„์œจ(R) 0.5์ดˆ๊ณผํ•˜๋Š” ๊ฒฝ์šฐ๋Š” ์กด์žฌํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ P 0 ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๋ฉด ๋œ๋‹ค.

 

P(0.0) ~ P(0.2) = 0.5

P(0.3) ~ P(0.5) = 0.333, ์žฌํ˜„์œจ์ด ๊ฐ™์€ ๊ฒฝ์šฐ๋„ ํฌํ•จํ•˜๋Š” ๊ฒƒ์„ ์œ ์˜ํ•˜์ž.

P(0.6) ~ P(1.0) = 0, ํ•ด๋‹น ์žฌํ˜„์œจ์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด ์ •ํ™•๋ฅ (P)์˜ ์ตœ๋Œ“๊ฐ’์€ 0์ด๋‹ค.

๋ธ”๋กœ๊ทธ์˜ ์ •๋ณด

JiwonDev

JiwonDev

ํ™œ๋™ํ•˜๊ธฐ